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Abstract

In this article the identification of the material parameters occurring in isotropic and incompressible hyperelasticity
relations of generalized polynomial-type is discussed. The underlying strain-energy function depends on the first and
second invariant of the left Cauchy-Green tensor in the form of a polynomial. The material parameters are the
polynomial coefficients. This leads in several identification processes to linear least-square problems. However, in most
applications the parameters are not restricted to a range of validity. This article points out that the assumption of
merely positive material parameters leads to a non-negative strain-energy function in any process which is underpinned
by requirements with respect to gradient and convexity behaviour in certain deformations. Furthermore, it is shown
that for positive material parameters no non-monotonic behaviour occurs in simple deformation processes under
consideration outside the identification region. The second topic of the article deals with some identification applica-
tions of tension—torsion tests, which are carried out by Haupt and Sedlan (Archive of Applied Mechanics, 2000), taking
into account the inequality constraints emphasized. Under certain assumptions, this naturally leads to new, specific
models. Furthermore, it is shown that the parameter estimation becomes much less sensitive than in the unconstrained
case. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the work of Rivlin and Saunders (1951), which assumed a strain-energy function of the form
Y(Ip, g) = > > eyl — 3) (g — 3), (1)
=0 j=0
a variety of constitutive models incorporated in this class of strain energy function have been proposed for
incompressible materials. Here, Iy = trB = B; symbolize the first and Il = 1/2((trB)> — trB?) and second
invariant of the left Cauchy—Green tensor B = FF', with the deformation gradient F = GRAD 7 (X, ?).
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Table 1
Material models based on polynomial order
References Coefficients used
Mooney-Rivlin* Cio o1
James et al. (1975) cio Co1 cu €20 Co2
James et al. (1975) clo Col e C20 co2 C cn €30 Co3
Isihara et al. (1951) C1o Col €20
Neo-Hooke** Cio
James et al. (1975) clo co1 ci &) C30
James et al. (1975) cio Col cn €20 Co2 €21 €30 Ca0
Biderman (1958) c1o Col €20 €30
Tschoegl (1971) c1o Col ci
Tschoegl (1971) C10 Col Cxn
Lion (1997) Cio Co1 €50
Haupt and Sedlan (2001) C10 Col C11 Co2 C30

* See Mooney (1940); Rivlin (1948).
**See Rivlin (1948).

X = 7r (X, 1) denotes the motion of a particle X. These models are widely used in theoretical and practical
applications, e.g. finite element calculations. The identification of the material parameters c;; is usually
carried out by means of experiments for homogeneous stress—strain states (simple tension, simple or pure
shear, biaxial tension) or inhomogeneous deformations (tension—torsion tests) for which analytical solu-
tions exist. These solutions depend linearly on the material parameters which, in the case of their identi-
fication, leads to a linear least-square problem. Table 1 summarizes a number of models known from the
literature. The most well-known elasticity relations are the Neo—Hooke model, y(Ig) = ¢1o(Ig — 3), and the
Mooney—Rivlin model, ¥ (I, llg) = c19(Ig — 3) + co1 (IIg — 3) (see Mooney, 1940; Rivlin, 1948). The ma-
terial parameters of both models must be positive, ¢q; = 0, ¢jo > 0, to satisfy the requirement of a positive
strain-energy (see, for example, Truesdell and Noll, 1965, Section 95; or Haupt, 2000, Ch. 9.2.4). However,
in the case of higher-order models, no generally accepted requirement exists, instead, one might be afraid to
exclude possible solution if all parameters are positive. This is underpinned by identification processes
which, with negative coefficients, yield very good adaptations of the model to the experimental data.
However, outside the identification region the stress—strain curves may give non-physical responses, for
example, for positive stretches in a tensile test negative stresses occur (see, for example, James et al., 1975;
or Hartmann, 2001). In Hartmann (2001) numerical studies applied to tension—torsion tests are carried out
in order to obtain a better insight into the sensitivity of the identification processes. As a result, it is
mentioned that higher-order models are most sensitive with respect to small changes of the test data.
However, in all these studies negative material parameters cannot be ruled out for either a small or a high
number of test data.

In order to avoid the phenomena of non-monotonic stress—strain curves, Kao and Razgunas (1986)
introduced some non-linear inequality constraint conditions which must be satisfied by the material pa-
rameters c¢;; in the case of models 2 and 6 of Table 1. These constraints do not exclude negative parameters
and are developed on the basis of simple tension tests so that physically plausibles curves are obtained.
However, it is possible to obtain material parameters satisfying these inequality constraints but leading to
non-physical curves in other tests (e.g. simple shear). Further investigations concerning the identification of
the material parameters under constraint conditions, resulting from the restriction of a stability criterion,
have been carried out by Przybylo and Arruda (1998). They make use of a certain form of the Drucker
stability inequality cited in Johnson et al. (1994) to the theory manual of the finite element code ABAQUS
(see, for example, Hibbitt et al., 1998). Przybylo and Arruda (1998) and Johnson et al. (1994) assume the
constraint 2?21 do;de; > 0 with the increments of the principal Cauchy stresses o; and a non-specified
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principal strain-increment de;. The strain increments are defined in Hibbitt et al. (1998) by the increment of
the logarithmic strains, d(In /;), where the A;’s are the principal stretches. All these investigations are re-
stricted to plane stress problems (o3 = 0, i.e. simple tension, pure shear and biaxial tension) because in that
case it is possible to eliminate the undetermined pressure of the Cauchy stresses. In their study they arrive
at positive material parameters c¢;; > 0 and further non-linear inequality constraints. The investigations
mentioned above remind one of Hill’s inequality, in which the scalar product of an objective stress-rate and
strain-rate must be positive to characterize a stable material. A detailed discussion on necessary conjugate
or dual stress and strain-rate tensors is carried out by Hill (1970) and Haupt and Tsakmakis (1996) and is
treated by Ogden (1984) with respect to constitutive inequalities. In the case of incompressibility only one
pair of stress-rate and strain-rate tensors yields an inequality, wiper = T - E® > 0, without specifying the
pressure p, namely T = RTTR and E” = InU, where T defines the Cauchy stress tensor, R the rotation
tensor of the polar decomposition of the deformation gradient and U the right stretch tensor (Ogden, 1984,
Ch. 6.2.8). The dot denotes the material time derivative. However, the fulfillment of wy,., > 0 is an awkward
task leading to complicated non-linear constraints.

In contrast to the investigations mentioned above we propose in this article that all material parameters
of any kind of strain energy function (1) should be positive, since the fundamental requirement of an always
positive strain-energy function in all ranges of deformation is easily fulfilled. This, somewhat restrictive
assumption may exclude possible strain-energy functions. However, without particular investigations of
some specific models this assumption leads to physically plausible results in the simple deformation tests
examined. In order to show this, we first investigate the gradient behaviour of simple tension, simple shear,
biaxial tension and pure torsion tests. Furthermore, the Baker—Ericksen inequality, which characterizes a
specific stability behaviour, is satisfied. This also happens, as a sufficient condition, if all material pa-
rameters are positive (Truesdell and Noll, 1965).

The consequence of the assumption of positiveness leads to a linear least-square problem with non-
negative solution, i.e. linear inequality constraints exist for the material parameters. In contrast to the
investigations of the parameter estimations performed in Hartmann (2001), the incorporation of the in-
equality constraints is studied in this article. To gain a better insight with respect to the consequences in the
parameter estimation, the identification of the material parameters is carried out utilizing tension—torsion
test published by Haupt and Sedlan (2001).

2. Basic assumptions and simple deformations

First of all, the strain-energy function (1) is investigated. Eq. (1) is rewritten in terms of the singular
values 2; > 0, i =1, 2, 3, of the deformation gradlent F= Z, | AiV; ® Uy, 1.e. the elgenvalues A; of the right
or left stretch tensor U = Zl Al @ or V= Z, | AiV; ® V; respectively, where i; and V; are the eigen-
vectors of U and V. Both tensors result from the polar decomposition F = RU = VR with the rotation
tensor R. First, we evaluate the left Cauchy—Green tensor B = FF' = Zf 112{1’1 ® v;. If the incompressi-

bility condition detB = /743/3 = 1 is taken into account, it is easy to show that
1

lg=trB=/+B+5="1+3+—" 2)
(A142)
and
_ 1 2 2\ -1 _ 1 1 1
Iy = 3 ((trB)" —trB°) =trB™" = 7 + e + 2 (3)
1 1

Mg =215+ 35+ =i+ —+— (4)

noxn
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hold. The strain-energy function (1) now reads in terms of the singular values

T B N P L A
Y (Ig, 1lg) = lz(;;p,,(; + 3+ ;?f ) ( P +A1+A2 3). (5)
It is well-known that both parentheses are non-negative in the case of incompressibility. Nevertheless a
short proof is given in Appendix B.

Keeping these results in mind, we investigate few homogeneous and inhomogeneous deformation pro-
cesses, namely simple tension, simple shear, biaxial tension and pure torsion, with respect to the relation
between external forces and prescribed deformational parameters. Investigations are carried out to see
whether the resulting curves could be non-monotonic in the case of positive material parameters c;;. In
order to avoid duplicate derivations we start with the biaxial test and continue with simple shear and
tension—torsion tests.

The constitutive equation

T = —pl + ¢,(Ig, 115)B — ¢, (Ip, 115)B~" (6)

forms the basis of all these cases, with the Cauchy stress tensor T, which is decomposed into the pressure
term —pl and the so-called extra stresses S = pl + T determined by the constitutive equations. The pressure
p has to be solved by the underlying equilibrium and boundary conditions. The scalar functions ¢, (Ig, I1g)
and @,(Ig, ) result from the strain-energy function (1)

@, (Ig, 1) —2——ZZZC,, (Ig —3) "Iy — 3y >0, (7)
@, (Ig, 1) 726113 2; jzc,,jlr3 (Ilg —3Y ' >0, (8)

which are obviously non-negative, since the material parameters are assumed to be non-negative and the
terms Ig — 3 and Ilg — 3 are non-negative. For the following calculations we need the derivatives

¢y, (Ig, Ig) = 2‘1”; = 22%5 = 2g jiocf, i(i — 1)(Ig — 3) (Il — 3) > 0, (9)
oully My = G =25 =23 3 e, 7 1)1 =31l =3/ 20, (10
015(Ip, 1) = gg; - 261226‘&; = 22 ,nl ¢y ijlg —3) (g — 3" >0, (11)
Pl ) = 222 2 TV 111 2 0 (12)

ol 0l Ol

which are obviously non-negative in view of the arguments given above. Even higher derivatives, for ex-
ample ¢, = 0>¢, /0lgdllg = 20°y /0I5 dllg are non-negative.

2.1. Biaxial tension

A very frequently used finite deformation process is based on a plane rubber sheet loaded independently
in two directions (Rivlin and Saunders, 1951; James et al., 1975). The deformation X = jr(X,?) =
. +)L2X2€2+(/11)v2)71X3é’3 yields the deformation gradient F and the left Cauchy—Green tensor
B =FF":
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o - - - , “1o o
F=/18 ®€+h&e&+ (L) &®E&, (13)

B=22% 08+ 2608+ (i) &8 (14)
The invariants of the left Cauchy—Green tensor are given by Egs. (2) and (3). Due to the structure of the left
Cauchy—Green tensor (14) and the stress boundary condition g; = 0 the Cauchy stress tensor (6) acquires
the form T = 6,6} ® €, + 0,6, ® &,. The stress coeflicients are calculable via

G1=—pH e — ikt = —pt+ e — ey, (15)
by exploitation of the pressure p using the above-mentioned stress boundary condition in out-of-plane
direction, g3 = 0. The normal forces N, and N,, which belong to the areas 4; and 4, in the reference
configuration, yield the engineering stresses Tri; = Ny/4; and Troy = N, /A,. Triy and Try are the com-
ponents of the first Piola—Kirchhoff stress tensor, Tg = TF T, i.e. we arrive at

Ny o 1 2
1 Tri = i <;~1 23/@)(‘!’1 + 75¢2), (16)
N, () 1 2
e (T + 17
4 R22 1 ( 2 )L%/g>(¢’1 102) (17)

(see, for example, Atkin and Fox, 1980, Ch. 3.5). Now, in a diagram Ty;;(/4;) the gradient behaviour for
constant /, is investigated. To this end Eq. (16) is differentiated with respect to A;:

0Tr11 3 2 1 O0p, 0lg O¢, 0llg ., [ O¢p, Olg
— (112, A s | (21T 90 s 2 (002 T
o ( +)f;/1§>((p VA0 T\ o I B, B, et o T2\ Bl o

2
Op, 0llg 3 > 1 5 .
oI, oA )) - (1 U%) (@14 2502) +2{ /1 — peps (@11 + 201205 + 9pnly) 2 0.
(18)
In this expression the relations (9)—(12) and

olg 1 ollg L 1,0l
. - — =2 —— | = 1
a)hl </’{1 i?)é) I 6/11 </L1)”2 i}) /LZ 6/11 ( 9)

1

are utilized. Since 4, 4, > 0 holds, the gradient of the engineering stress Ty, for constant 4, is non-negative.
Unfortunately, we obtain no further insight from the second derivative 0*Tgy;/ a;ﬁ. Analogously, in a di-
agram Tr»(4,) the ascent of the curve is non-negative.

2.2. Simple shear
A simple shear experiment is very difficult to handle. Nevertheless the resulting equations give a certain

insight of the problem under investigation. For the motion X = ZR(X, 1) = (X1 + kX2)€ + X2€; + X385 the
deformation gradient F as well as the left Cauchy—Green tensor B and its inverse read:

F=€1®€1+€2®€2+€3®€3+K€1®62, (20)
B=¢®&+(1+K)6R&&+& Q& +KE R +& &), (21)

B'=(14+x)8 08 —k@EQ&E+6RE) +6H06 +8& 8. (22)
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The first and second invariant (2) and (3)
I[g=trB=3+x?  Ilg=trB' =3+’ (23)

lead to the strain-energy function y(Ig,Ilg) =377 >0, ;%™ which is obviously non-negative for
¢; > 0. In the following, the shear force with respect to a change of the parameter « is investigated. The
shear stresses are calculable by use of Egs. (6) and (21)—(22)

o1 = k(@) + ¢@,) = 0. (24)
Since the stress coefficient T, of the first Piola—Kirchhoff tensor is equal to a,, the exterior tangential
force F; = g4 is non-negative. The gradient

Oo
6—;2 =0+ @y + 26201 + 2015 + ¢p) =0 (25)

and its derivative with respect to x always are non-negative:
62012
O

Equality always holds in the undeformed state, x = 0. In all other cases, the second derivative d*a,/0x>
vanishes only for strain-energy functions which are merely linear in the first or the second invariant (Neo—
Hooke and Mooney-Rivlin model as well as a model containing the term co; (IIg — 3)).

= 6K(@y) + 2015 + Pyy) + 4K (@111 + 30112 + 3050 + P) = 0. (26)

2.3. Tension—torsion

In this subsection the analytical solution of the extension and torsion of a cylindrical body, which is a
non-homogeneous deformation, is recalled. For this kind of deformation, based on the assumption of
incompressibility, the motion is defined by » = 2~/?R, ¥ = @ + DZ and z = iZ. (r,9,z) are the cylindrical
coordinates in the current configuration representing the radial, the circumferential and the axial coordi-
nates. (R, ©,Z) symbolize the cylindrical coordinates in the references configuration of a material point X.
A denotes the stretch and D the twist. D represents an angle o per undeformed length L, and describes
the relative distortion of the top and bottom planes with respect to the reference state, D = /L. The
deformation gradient takes the form

- 67" - el 0 0 o
F = GRAD 7z (X, 1) = aTﬁgk ®G'=| 0 i Dr|&®kE (27)
0 0

where the tangential vectors g =¢,, g =7€, and g5 =¢€. as well as the gradient vectors G' = Ey,
G’ = 1Ee and G’ = E; are substituted by the unit vectors &, k = r,9,z and E,, L =R, 0,Z. The left
Cauchy-Green tensor B and its inverse have the form

! 0 0
B=| 0 i'+(Dr) Dri|&®E, (28)
0 Dr, P
J 0 0
B'=|(0 1 —Dr & ® & (29)

0 —Dr 27+ (Dr))!
yielding the invariants

=tB=2."+2+ (D), Ig=tB'=21+17+(Dr)1" (30)
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which are functions of the radius r.
Now, we look at the exterior quantities such as the normal force and the torque, measurable in ex-
periments:

N:/TZZdA:2n/ T.rdr, M:/ﬂgzrdA:2Tc/ Ty, dr. (31)
4 0 4 0

For example, in Hartmann (2001) it is shown that the normal force N and the torque M achieve the
representation

iR, 2
N(%,D) =2n / <</12 —At- (Dzr ) )q)l - (;52 -+ (Dr)zil)(Pz)rdr, (32)

0
/f]/zRa
M(2,D) = 2TcD/ (,(r, A, D)1+ @y(r, 2,D))r dr. (33)
0

The functions ¢, and ¢, depend on the radius r, the stretch 4 and the twist D, ¢, (r, 4, D) and ¢,(r, A, D).
This dependence is formally given by ¢, (4, (Dr)*) and ¢,(4, (Dr)?) caused by the invariants (30). In Egs.
(32) and (33) we have introduced the current exterior radius r, by the reference radius of the specimen R,,
r, = 2_Y’R,. Furthermore, the boundary condition 7,,.(r,) = 0 is exploited.

In the following two distinct investigations are performed. First, simple tension in the absence of torsion
and, secondly, pure torsion are taken into consideration.

2.3.1. Simple tension
In the case of simple tension the normal force N can be derived, for example, by the biaxial tension
problem for 2, = Aand 4, = 7712, Then the normal force (16) is known (N = Ny, N, = 0):

N

L (1=27)(1 + 92). (34)

We obtain the same result if we integrate Eq. (32) for D = 0, 4y = nR2. The invariants (2) and (3) or (30)
reduce to

Ig=trB=2+21"  Ilg=trB'=21421" (35)
with the derivatives

dlg ,3 dllg e dlg

=2(1 — =2(1 - =1 .

G -4 and =2l =AT) =40 (36)
The function N(A) has a non-negative gradient

1 dN ., _3 dly dlg dlg dlly

A*OE—:M (Ao +¢@,) + (1 — 4 )((014‘/1((011(”"‘9012M)"‘((ﬂzlﬂ"‘q’zz(ﬂ))

= (14+27)p, + 377 0y + 22(1 = 27V 3y + 201, + 47 9yy) >0 (37)

due to 4 > 0 and the properties (7)—(12), where we utilize derivatives (36). Thus, the function N(1) increases
monotonically for 4 — oo. However, saddle points may occur. If we look at the gradient for A = 1, Eq. (37)
yields
1 dv
Ao dA|,_,

= 6(ci0 + cor), (38)

i.e. in a N(4)-diagram the material parameters ¢y and co; are connected to the initial slope.
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2.3.2. Pure torsion
In the subsequent analysis pure torsion is investigated (4 = 1). The invariants (30) reduce to

Ig=trB=1Ilg = trB™' =3+ (Dr)’ (39)
which yields a derivative with respect to the twist D of
dlg  dllg

- = — 2
iD= db 2Dr”. (40)
Now, we examine the function M (D) and N(D) of Eqgs. (32) and (33) for A=1and D > 0:
R,

N(D) = = [ (0,0.) + 20,0 D) o (@)

0

Rq
M(D) =220 [ (0,(r.D) + 03(r D)) dr 2)
0

As a consequence of positive material parameters, ¢;; > 0, we obtain the following behaviour: in a N(D)
diagram the normal force always is negative (Poynting effect). The sign of the torque depends on the twist D
and is negative for D < 0 and positive for D > 0 in the case of positive material parameters.

The gradients of the functions N(D) and M (D) are achieved by means of

op,(r,D 0@, (r,D
# =2Dr* (¢, + ¢1,), % =2Dr* (g + ¢2), (43)
and utilization of Eq. (40),

dN fe 3 s [ 5

- 2nD (@1 + 2¢,)r" dr — nD- (@1 + 3012+ 20)r dr, (44)
0 0

dM f 3 , [ 5

aD - 2n (@1 + @y)r’ dr + 4nD (@11 + 2015 + @y)r dr. (45)

0 0

Here, N'(D) <0 for D > 0 and N'(D) = 0 for D < 0. In contrast to this result the torque-twist curve M (D)
always has a non-negative gradient. The second derivatives have the following signs: N”(D) is negative
except for D = 0, N"(D) <0 and M"(D) <0 for D < 0 as well as M"(D) = 0 for D > 0. M"(D) = 0 holds for
the undeformed state, D = 0, and for material models in which only the material parameters ¢y and ¢y
occur.

Obviously, the gradient N'(D) = 0 for D = 0 holds. The gradient M’(0) is calculable from Eq. (45) to

dmMm

E o = TER;(ClO + C()]) (46)

and is connected to the material parameters ¢y and cy;.

3. Further properties

The considerations of simple deformation processes (boundary value problems) are associated with the
characteristics of the constitutive equations. An overview of the constitutive inequalities employed in the
past to guarantee stability is given, for example, in Truesdell and Noll (1965, Sections 51-54), Wang and
Truesdell (1973, Ch. 8) or Marsden and Hughes (1983, pp. 16ff). Although there are open questions with
respect to the range of validity of the stability criteria and their effects, we examine the Baker—Ericksen
inequality which is applicable in the case of incompressibility.
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Baker and Ericksen (1954) — see especially Truesdell and Noll (1965, Section 53) — introduced some
inequalities which imply the assumption that the greater principal stresses always occur in the direction of
the greater principal stretches:

(60—0p)(Aa—4p) >0 if Ay #£ 4 (47)
A sufficient condition for inequality (47) is represented by
¢, >0 and ¢,>0. (48)

The assumption of positive material parameters imply the positiveness of inequalities (48), see Egs. (7) and
(8). However, this is only a sufficient condition as well.

A further requirement corresponds to the behaviour of the strain-energy in extreme cases. In that case
the influence of the pressure p is omitted. If one eigenvalue A; tends towards zero or infinity, the strain-
energy function must become infinity: 4; — 0t = y — 400 or 4; — 400 = iy — +oo. This behaviour is
obviously satisfied in view of Eq. (5) if the material parameters are all assumed to be positive.

Of course, the choice of positive material parameters is not a necessary condition for physically plausible
curves. However, in the investigated examples they do not lead to any inconsistencies.

Remark 1. Another widely applied constitutive relation is due to Ogden (1972) based on the strain-energy
function

W, day2a) = 3 Be (e 4 2 4 20 = 3), (49)

a=1 74

detF = 414,43 = 1, with the material parameters p, and «,. In that article Hill’s inequality to ensure sta-
bility is applied, which yields the inequality w2, > 0 (no sum over ) (Hill, 1970; Ogden, 1972). Similar to
the proposal here, this inequality constraint is merely a sufficient condition satisfying the applied stability
criteria. A discussion concerning the behaviour of the model as well as the identification of the material
parameters are treated, for example, in Chadwick et al. (1977), Twizell and Ogden (1983), Ogden (1986),
Benjeddou et al. (1993) and Gendy and Saleeb (2000).

4. Identification using tension—torsion tests

In this section we study the identification of the material parameters c;;. In the above-mentioned con-
siderations the description of the deformation of homogeneous stress and strain states as well as the in-
homogeneous deformation of the tension—torsion experiment yields a linear least-square problem with
non-negative solution in the case of parameter identification, i.e. the material parameters are assumed to be
non-negative. In order to achieve a systematic representation of all models in Table 1 and further prob-
able models we convert the strain-energy function (1) to matrix notation for the case of tension—torsion
tests:

¥(Ip, 1) = E"(Ip, II5) Y

(50)

The superscript T denotes the transposition of a column vector. Column vectors are underlined once and
matrices twice. The vector Y € R™ D"+ contains the material parameters

XT = {C(]() Ccol --- Con Ci10 C11 -+- Clyp +v- Cpo -+ Cmn} (51)
and the vector E products of the invariants (30)

ET(IB,IIB):{LZ()Z)O aobl a()b,, albo alb,, amb() amb,,}, (52)
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with

a;=(Ig —3) fori=0,...,m and b; = (Ilg—3) for j=0,. (53)
The functions ¢, and ¢, lead to the representation

¢ =2E]Y and ¢,=2E]Y (54)
with E, = 0E/0ly and E, = OE/0llp:

ET = {&obo Gobi ... doby @ibo ... @by ... dwbo ... dmb,,}7 (55)

Eg = {61050 a0131 e Cl()gn all;() . alén e ami)o e Clml;n}. (56)
These vectors contain products of the coefficients (53) and their derivatives (4; = da;/dIg, 5_,- = db;/d1Ip):

. |0 - fori=0, ~ /0 - forj=0,

“"‘{i(IB—3)" fori=1,....m. bf—{j(HB—3)~” for j=1,...,n. (57)
The normal force (32) and the torque (33) achieve the representation

N(4,D) = Zy (4, D)Y (58a)

M(2,D) = Z;,(2,D)Y (58b)

with

/*L—I/ZR“ (Dr)z
ZN(jwl)):"'Tc‘/0 {EK?‘,A,D)(&Z—X_I—T) _EZ(nlvD)

x (A2 =2+ (Dr)’27") prdr (59)
( )}

and

2712R,
Z,,(4,D) = 4D1r/ {JE,(r, A, D) + E,(r, 2, D) }r* dr. (60)
0

Incorporating the different models of Table 1 is done as follows: the vectors Y € R"+V*1 and therefore
Zy and Z,,, i.e. E, and E,, are reduced to only those coefficients which are of interest. In other words, we
depict the subset of material parameters in which we are interested. This subset is denoted by Y € R?. ¢ is
the number of material parameters, ¢ = (m + 1)(n + 1) — c. ¢ represents the number of material constants
defined in advance by zero. A list of parameters m, n, ¢ and ¢ for the models of Table 1 is shown in Ap-
pendix A, Table 6. Thus the vectors Z,, Z,,, E, and E, result in Z,, Z,,, E, and E,. For example, the
Mooney—RiVlin model with maximal exponents of the first and second invariant m = 1 and n = 1 leads to
the vectors YT = ={coo co1 c10 ¢11} and YT = = {co1 cio}, i.e. ¢ =2 and thus g = 2. Therefore, the scalar
products (58) need merely the reduced vectors Z and ZM which have to integrate E = {aoh a1by} and
E = {aobl albo} The coeflicients of Z and Z,, are calculated in advance, i.e. they are integrated ana-
1yt1cally for example with Mathematica (Wolfram 1991). Now, the normal force and the torsional couple
(58) obtain the form

N(),D)=2Z}Y and M(,D)=2ZY. (61)

Now, we are interested in the incorporation of different experimental results. The number of test data
(e.g. 4;, i=1,...,n;) of each experiment is denoted by a number 7. n, defines the number of all experi-
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ments. The maximum number of all test data of every experiment is symbolized by np, np = ;" ns. In the

case of simple tension, D = 0, the stretches 4;,i =1,...,n;, are prescribed and the normal forces N,,
i=1,...,n;, are measured. The normal forces are assembled in a vector
di ={Nu ... Nu,}. (62)
For a pure torsion or combined tension—torsion experiment the stretches 4, i = 1,... 7, and twists D;,
i=1,...,m, are prescnbed Here, n; = 2i; holds. In this case the vector d; = {dN dM } contains the
measured normal forces d ={Nu ... Ny} and torques d ={M; ... My,}. All test data d,, k =
1,...,n;, is assembled in a long column vector:
= {QIT QZ}, d e R™. (63)

In order to compare the experimental data d with the simulated data we have to calculate for given simple
tension test data 4;, i = 1,...,m, the normal force N; = N(/;,D; = 0) = Z]T,l.(/l,«,D,« = 0)Y by means of the
reduced vector of Eq. (58a). These results are assembled in the vector

Nia Zy,
D V=AY with A = | ¢ |erwvw (64)

T
Nioy, ZNkn/

On the other hand, in combined tension-torsion tests, 7; simulated normal forces N; =N (4, D;) =
Z..(2:,D,)Y and 7, simulated torques M; = M(4;,D;) = Z,,,(/;, D;)Y are assembled in

e T

Ni Ly

N];;,k A Y ith A Z]Fl\jkﬁk c R™ xq (65)
= w1 = | = g

M = = Zyy

Mkﬁ’f ZAT//kﬁk

All these simulated values, namely (64) and (65) are assembled in the product éi with

A,
A= 1|, AeR" (66)

A,
Usually, a least-square method is applied, where the norm of the residual r éi — d should be minimal
F(Y) = Yr3 = 4™r = YJAY — dJ}} — minimum (67)

with respect to the inequality constraints
Y, >0, i=1,...,q. (68)

Hartmann (2001) proposed a weighting technique so that different physical quantities of different magni-
tude obtain better fitting results. According to Lawson and Hanson (1995) a row-scaling technique is
utilized pre-multiplying the residual r with a diagonal-matrix G, r = Gr. Then, we look for the solution of
the modified extremal problem B B

F(Y) =3G1l; = 3I(GA)Y ~ Gd|; — minimum, % >0, i=1,...,q. (69)
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For simple tension tests coefficients

1
(70)
max [Nyl
seesllle
and for combined tension—torsion tests
1 1
max |Ny| max My
J=1,... J=1,. 0 h
are chosen so that the row-scaling operator G acquires the form:
G, Otkl( ) simple tension,
= =(ng
G= with G ={ |1 , , , 72
= G =+ l * =) My 1 combined tension—torsion. (72)
The index next to the identity matrices I defines the dimension of the matrix, I € R™*"_ With this

weighting technique the maximal value of the torque and normal forces for each experlment is separately
normed to one.

4.1. Identification without constraints

In order to study the incorporation of the constraints (68) into the parameter estimation and the effects
on realistic test data, some remarks have to be made with respect to the non-constraint problem. In
Hartmann (2001) a systematic study of the linear least-square problem (67), especially (69), utilizing ex-
perimental test data of various tension—torsion tests published by Haupt and Sedlan (2001), is treated. In
the latter work, a model of finite viscoelasticity is developed based on a proposal of Lubliner (1985) (see
also Lion, 1997; Reese and Govindjee, 1998; and the literature cited there). In this model the stress-state is
decomposed additively into equilibrium stresses, represented by an hyperelasticity relation and the rate-
dependent overstresses. The equilibrium stress-state is achieved by certain relaxation processes. However,
the proposed identification process here is not limited to just this kind of rubber.

In Hartmann (2001) the singular value decomposition (see e.g. Golub and van Loan, 1986, pp. 138ff or
Kielbasinski and Schwetlick, 1988, pp. 240ff) is applied, which supplies further insight into the sensitivity of
the problem under consideration. The singular values o, of the matrix A or GA, respectively, correspond to
the eigenvalues v; of the matrix C = A'A, o7 = v, v > 0, and are used to define the condition number
K2(A) = 1/a,. It has been shown that the weighting technique (69) with the row-scaling operator G of Eq.
(72) is necessary to achieve considerably better results. Thus the condition number B

2(GA) =a1/0, (73)

is taken into account in the investigations described below. g, symbolizes the maximal and ¢, the minimal
singular value. Here no rank-deficiency of the matrix G A is assumed to occur so that ¢ is equal to the rank
of GA. The condition number is an indicator of the sensitivity of the resulting material parameters, i.e. for
a high condition number the problem is extremely sensitive to perturbations of the test data and shows if
nearly linear dependent columns of the matrix GA exist.

In Hartmann (2001) the parameter estimation is applied to the models of Table 1 incorporating a tension
and a pure torsion test. The experimental data is shown in Figs. 1 and 2. These higher-order models ap-
proximate the material data inside the range of identification very well, which is evident in view of
the residuals 7 in Table 2. Some of these models lead to negative material parameters calculated from
the underlying least-square problem and show non-physical results outside the identification region.
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Fig. 2. Results of identification in pure torsion. Identification using simple tension and pure torsion (weighting technique used).

Table 2

Condition number and residua for the tension and the torsion test using singular value decomposition
Models 7 K2
1 0.269 4.5
2 0.113 365
3 0.101 88700
4 0.226 9.25
5 0.688 1
6 0.116 238
7 0.106 15500
8 0.186 25.6
9 0.236 7.7
10 0.201 13.6
11 0.199 71.7
12 0.113 210




8012 S. Hartmann | International Journal of Solids and Structures 38 (2001) 7999-8018

Furthermore, models 3 and 7 exhibit very large condition numbers leading to a very sensitive identification
process.

4.2. Identification using constraint conditions

In order to investigate the effect of positive material parameters, we consider the processes of simple
tension and pure torsion shown in Figs. 1 and 2. The numerical method chosen is proposed by Lawson and
Hanson (1995, Ch. 23) and the FORTRAN-code is obtainable from http://www.netlib.org. This method is
specialized for the so-called NNLS, non-negative least-square problem.

4.2.1. Application to simple tension and pure torsion

In Table 3 the constitutive models of Table 1 are presented again. Now, only non-negative material
parameters are permitted. As a result of the identification process we see the following: only the framed
parameters are identified with positive values. All other quantities are identified by the numerical method
with zero. Except the Neo-Hookean model, all other models need the Mooney—Rivlin parameters ¢y and
c19, which becomes clear in view of Eqs. (38) and (46). The material parameters ¢q; and ¢ are necessary to
represent the initial slopes of the simple tension process and the torsional couple versus twist curve. The
higher-order terms identified are necessary to reproduce the curvature behaviour in the simple tensile test as
well as the non-linear behaviour of the normal force versus twist curve in the pure torsion test.

It is interesting to note that the higher-order models only need one extra term with respect to the
Mooney—-Rivlin parameters (as a result of the applied numerical method), which is connected to the highest
order of the first invariant Ig. Thus, we investigate the following models: first of all, all models should
consist of the Mooney—Rivlin parameters ¢y and c¢jo and further higher-order terms. Therefore, we choose
the models containing ¢3y (model 13) or ¢4, model number 14 (the model with the ¢5 term of Lion (1997)
already exists, model 11). Furthermore, we have chosen a model with all material parameters up to the
highest order 5 of the first invariant, i.e. co;, c10, 20, €30, C40, C50. However, the identification procedure
needs only the term cg;, ¢ as well as ¢4 and c¢sp (model 15). The other terms, ¢y and c3p, are calculated to
zero. These models are provided with the model numbers 13-15. In Table 6 of the appendix the models
characterizing parameters are summarized.

Table 3
Zero elements of the material models for identification with non-negative solution (framed coefficients are positive, non-framed co-
efficients are zero)

Models Coefficients

1 o1

2 C1o Col cu €20 co

3 cn €0 co2 €1 i €30 €03

4

5

6 Clo Col cn C20 €30

7 cn €20 Co2 (&) C30 €40
8 €20 €30

9 cu

10 €10 Col »

11 €50
12 C10 Cot ci cn C30
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Table 4
Residuals, condition numbers and material parameters (N/m?) of particular models
Models 7 Ky Co1 C10 C30 C40 Cs(
13 0.206 16.8 0.48660 x 10° 0.28478 x 10° 0.18718 x 10°
14 0.200 34.8 0.47942 x 10° 0.29663 x 10° 0.81212 x 10*
11 0.199 71.7 0.47333 x 10° 0.30579 x 10¢ 0.36698 x 10*
15 0.199 95.5 0.47366 x 10° 0.30530 x 10° 0.40259 x 10° 0.34894 x 10*

Table 4 shows the results of the identification process. We see that the residuals 7 of the models decrease,
i.e. the distance between the simulated data and the experimental data diminishes as the order of the first
invariant increases. On the other hand, the condition number x, of definition (73) increases. Obviously, the
material parameters ¢y, and cj( retain nearly constant values due to their physical meaning. In comparison
to the unconstrained case, summarized in Table 2, the residuals deteriorate and the singular values have
moderate magnitude.

Remark 2. The material parameters calculated in Table 4 are the same regardless of whether one uses the
NNLS-algorithm or the singular value decomposition. Therefore the condition numbers in Table 4 are a
result of the singular value decomposition proposed in the context of generalized polynomial-type hy-
perelasticity in Hartmann (2001).

Now, we look at the results of the identification process shown in Figs. 1 and 2. First of all, it is worth
mentioning that the diagrams of simple tension, Fig. 1 and pure torsion, Fig. 2, show monotonic functions,
even outside the identification region, which has been analytically proven in the previous sections. Sec-
ondly, the identification of these deformation processes using the weighting technique produces good re-
sults in Figs. 1 and 2 as well. Lastly, let us mention that models 11 and 13-15 of Table 4 behave almost
identically.

In order to validate these models in a certain way, we simulate two further combined tension-torsion
processes shown in Fig. 3 and compare the results with the experimental data of Haupt and Sedlan (2001)
(for further details see Hartmann (2001)). In Fig. 4 we see that the models 11 and 13-15 produce good
results for the rectangular path. Only the magnitude of the torsional couple during the first twist-controlled
path is not reached. In the hourglass path this phenomena occurs as well, i.e. the torque is not repre-
sented as precisely as the normal forces. However, from a validation point of view, these results are sat-
isfactory.

(a) (b)

A (D,\) = (49.6,1.9) A j('“) =(55.1.9)
e \
1 - D 1 /47 D
0 o

Fig. 3. Combined stretch and twist controlled tension—torsion test: (a) rectangular path (b) hourglass path.
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Fig. 4. Identification using simple tension and pure torsion tests (weighting technique used). Validation of models 11, 13-15 of Table 4.

Table 5
Residuals, condition numbers and material parameters (N/m?) of particular models. Incorporation of rectangular and hourglass path:
(I) simple tension + pure torsion + rectangular path, (II) simple tension + pure torsion + rectangular path -+ hourglass path

r K2 Col cio 30 C40 Cs0
(1)
13 0.326 35.8 0.49954 x 10° 0.26385 x 10° 0.18990 x 10°
14 0.321 75.2 0.48186 x 10° 0.28844 x 10° 0.75628 x 10*
11 0.322 156 0.47021 x 10° 0.30363 x 10° 0.32785 x 10*
15 0.321 214 0.47951 x 10° 0.29152 x 10° 0.59274 x 10* 0.71313 x 103
(1)
13 0.382 43.1 0.50405 x 10° 0.25354 x 10° 0.20560 x 10°
14 0.376 89.5 0.48142 x 10° 0.28365 x 10° 0.81497 x 10*
11 0.377 184 0.46643 x 10° 0.30230 x 10° 0.35358 x 10*
15 0.376 255 0.47965 x 10° 0.28587 x 10° 0.71103 x 10* 0.45403 x 10°

4.2.2. Application to several combined tension—torsion tests

In the following, in addition to the simple tension and pure torsion test, we also take into account the
rectangular path and both the rectangular and hourglass paths of Fig. 3 and investigate the identification
results. It is worth mentioning that the properties of non-zero elements of models 1-12 in Table 3 do not
change if we incorporate the paths mentioned, i.e. the framed material parameters in Table 3 are the only
positive quantities. Thus, we investigate models 11 and 13-15 again. Table 5 summarizes the results of both
sets of parameter estimations.

In the first case (I) the experimental data of the simple tension, pure torsion and the rectangular path are
taken into account. The material parameters ¢o; and ¢ are close to the results of Table 4. The changes of
the values of the models 11, 13 and 14 are small. Merely the higher-order terms of model 15 show a sig-
nificant change between the underlying process of Tables 4 and 5(I). The additional incorporation of the
hourglass experimental data behaves similarly, Table 5(II). Note that the residual becomes higher due to
the increasing number of test data. The increase in the condition numbers indicates that the additional
experiments give only a little further information. Since there is merely a small change between the in-
corporation of material data sets (I) and (II) we show only the results of set (II) in Fig. 5. Considering all
test data hardly improves the results. This underpins the necessity of merely the simple tension and pure
torsion test. Because of the sensitivity of model 15 we favour models 11, 13 and 14.
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Fig. 5. Simulated tension-torsion tests with material parameters identified by a simple tension test, pure torsion test, rectangular path

and hourglass.

Remark 3. There are some strain-energy functions where only the first invariant Ig is chosen. For example,
the model of Arruda and Boyce (1993) has two positive, physically motivated material parameters for any
order of the first invariant but leads to a non-linear least-square problem. Their model does not fit into Eq.
(1). If we choose the model of Yeoh (1993) with the terms ¢y, ¢2p and c3y the identification method yields ¢;o
as the only positive value. ¢y and c3p are zero in order to satisfy the optimal solution of problem (69) with
non-negative material parameters (in the article of Yeoh (1993) a negative material parameter is identified).

This does not improve even if we choose the values ¢, k =1, ..

., 5. Even in this case only the Neo—Hooke

coefficient ¢y is identified (¢ = 0, k = 2,...,5) (see also the discussion in Przybylo and Arruda, 1998).
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5. Conclusion

In this article the assumption of merely positive material parameters in the context of incompressible
hyperelastic relations of generalized polynomial-type is investigated. This assumption is a sufficient con-
dition that the strain-energy function (1) is positive for every deformation process. However, it fulfils the
requirement of the Baker—Ericksen inequality. Moreover, in several simple deformation processes the as-
sumption of positive material parameters leads to monotonic functions of stress or forces under controlled
stretches, shear angles or twists so that no non-physical behaviour can take place.

The identification of the material parameters using a least-square method applied to simple homoge-
neous deformation processes and the tension—torsion problem leads to an optimization problem with linear
inequality constraints. The application of an identification procedure to some models of the literature
incorporated in the generalized polynomial-type hyperelasticity leads to only a few essential material
constants. The other parameters are identified by the numerical procedure with zeros. This reduces the
number of necessary terms. However, the identification results may lead to a certain deterioration in the
identification region but outside the identification region a non-physical behaviour is not recognizable.
Furthermore, the sensitivity of the identification problem diminishes considerably.
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Appendix A. Parameters of different models

Table 1 summarizes twelve models taken from the literature. The number of material parameters ¢, the
order m and n of the first and second invariant Iz and Il as well as the number ¢ of prescribed material
parameters, which are assumed to be zero in advance, are depicted in Table 6. Models 13-15 are investi-
gated in Section 4.2.

Appendix B. Behaviour of invariants

Since most textbooks on finite elasticity omit the proof, it will be shown that the terms in the parentheses
of Egs. (1) and (5) are positive. Since both invariants (2) and (4) have the structure x + y + (1/xy) withx > 0
and y > 0, the parentheses of Eq. (5) read f(x,y) =x+y+ (1/xy) — 3. The necessary condition for a
minimum of this function is fulfilled for f, = (8f/dx) = 0 and f, = (3f/dy) = 0. With f, =1 — (1/x%)
and f, = 1 — (1/x)?) we arrive at x = y = 1 for vanishing derivatives. In this case f(1,1) = 0 holds. Now,
we have to show that the function f(x,y) fulfils the sufficient condition, i.e. the matrix

Table 6

Coefficients of the investigated material models
Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
q 2 5 9 3 1 5 8 4 3 3 3 5 3 3 4
m 1 2 3 2 1 3 4 3 1 2 5 3 3 4 5
n 1 2 3 1 0 1 2 1 1 2 1 2 1 1 1
c 2 4 7 3 1 3 7 4 1 6 9 7 5 7 8
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- x3y3
has to be positive definite. The eigenvalues of this symmetric matrix (the positive coefficient in front of the
matrix is omitted for brevity)

ol =x" 4y + \/(x2 +32)° =322 > 0

are real and obviously positive, i.e. the function f'(x, ) is non-negative in any case (4; > 0, 4, > 0) and has a
minimum for A, = 4, = 1.
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